pip install colpali-engine.
ColPali produces multi-vector embeddings, meaning each input generates multiple embedding vectors rather than a single vector. Use
MultiVector(func.ndims()) instead of Vector(func.ndims()) when defining your schema.- Metric-AI/ColQwen2.5-3b-multilingual-v1.0 (default)
- vidore/colpali-v1.3
- vidore/colqwen2-v1.0
- vidore/colSmol-256M
create method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
model_name | str | "Metric-AI/ColQwen2.5-3b-multilingual-v1.0" | The name of the model to use. |
device | str | "auto" | The device for inference. Can be "auto", "cpu", "cuda", or "mps". |
dtype | str | "bfloat16" | Data type for model weights (bfloat16, float16, float32, float64). |
pooling_strategy | str | "hierarchical" | Token pooling strategy: "hierarchical", "lambda", or None. |
pool_factor | int | 2 | Factor to reduce sequence length when pooling is enabled. |
batch_size | int | 2 | Batch size for processing inputs. |
quantization_config | Optional[BitsAndBytesConfig] | None | Quantization configuration for the model (requires bitsandbytes). |