Skip to main content
Using cohere API requires cohere package, which can be installed using pip install cohere. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification. You also need to set the COHERE_API_KEY environment variable to use the Cohere API. Supported models are:
  • embed-english-v3.0
  • embed-multilingual-v3.0
  • embed-english-light-v3.0
  • embed-multilingual-light-v3.0
  • embed-english-v2.0
  • embed-english-light-v2.0
  • embed-multilingual-v2.0
Supported parameters (to be passed in create method) are:
ParameterTypeDefault ValueDescription
namestr"embed-english-v2.0"The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0
source_input_typestr"search_document"The type of input data to be used for the source column.
query_input_typestr"search_query"The type of input data to be used for the query.
Cohere supports following input types:
Input TypeDescription
search_documentUsed for embeddings stored in a vector
database for search use-cases.
search_queryUsed for embeddings of search queries
run against a vector DB
semantic_similaritySpecifies the given text will be used
for Semantic Textual Similarity (STS)
classificationUsed for embeddings passed through a
text classifier.
clusteringUsed for the embeddings run through a
clustering algorithm
Usage Example: